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ABSTRACT

An array of Superconducting QUantum Interference De-
vice (SQUID) bicmagnetometers may be used to measure
the spatio-temporal neuromagnetic field or magnetoen-
cephalogram (MEG) produced by the brain in response
to a given sensory stimulus. A popular mode! for the neu-
ral activity that produces these fields is a set of current
dipoles. We assume that the location, orientation, and
magnitude of the dipoles are unknown. We show how
the problem may be decomposed into the estimation of
the dipole locations using nonlinear minimization followed
by linear estimation of the associated mement time series.
The methods described are demonstrated in a simulated
application to a three dipole preblem. Cramer-Rao lower
bounds are derived for the white Gaussian noise case.

1 Introduction

The recent development of the SQUID biomagnetometer
has made it possible to detect and acquire measurements
of the very weak magnetic fields produced by neural ac-
tivity within the human brain. Using an array of SQUID
hiomagnetometers, we can simultancously acquire time-
series measurements of the transient neuromagnetie field
at a number of Jdifferent sites. To deduce neural activ-
ity patterns from these measurements reqguires solving an
inverse problem  computing the neural current sources
from the magnetic fields that they produce. Physically,
this inverse problem is under-determined, so a prior mod-
oling assumptions must be made about the underlying
neural current distributions in order to reach any “solu-
tion” (see [1] for an overview),  The simplest and most
widely ased composite model is the “dipole in a sphere”
Here, the impressed current is imodeled awa current dipole,
and the head i modeled as auniformly conductive sphere

Most MEG

sponse, which is neural activity oeeurning 1 response to

research volves a transient evoked re
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some sensory input, typically an auditory or visual stinu
lus. A current dipole can accurately model neural activity
localized to one site, representing the coherent activiation
of hundreds of individual neurons [2]. With this model.
the inverse problem redue>s to the nonlinear optunization
problem of computing the location and moment paranie-
ters of the dipole whose field best matclres the measure
ments in a least-squares sense. For more complex or dis
tributed evoked responses, the model can be extended 1o
include multiple dipoles. As in all modeling situations,
a trade-ofl exists Letween model complexiiy and general-
ity and the ability to estimate reliably the mode] paran
etere from the given measurement data
complexity of the source spatial models that ean be effe
tively employed, MEG researchers have begun to meorpe

To increase the

rate temporal modeling assumptions.  The addition of
temporal model increases the range of the measuremients
that can be used in model fitting from the spatial 1o the
temporal domain.

A spatio-temporal dipole model and the necessary asso
ciated assumptions & presented in [2]. MEG resear-hers
differ in how they describe the time varintion of the data
In (3], details of these models and their similarity 1 fornm
lation are described  In this paper, we restrict ourselves
to the “rotating” dipole model and present Cramer Rao
lower bounds for the white Gaussian noise case

2 Data Models

In this section, we present the Biot Savart law moa oo
venient diserete matrix notation, which we then o 1
develop aspatio-temporal dipole model commonly wsed
MEG research. The genernd modelis I - Gyt
the set {#,T) contains onr unknown pararneters The pa
rameters T con always be found using, o direet paendon
verse solution, but i general the paraneters o e

where

he found using an iterntive non hnear aonmeation ales
rithm (3]

2.1 Biot-Savart Law

The mverse problem considered here s one of Gk s
measurements of the magnetic vector field at dieaonote |



cations about the head and attempting to determine the
underlying current source distribution. We begin by ex-
amining the model for a single dipole, then expand this
model to account for multiple dipoles.

Establishing an origin, denoting the dipole position
as E, and observing the ith measurement at receiver lo-
cation ff(t'}, the Biot-Savart law for a current dipole can
be written as

—

sy = Mx(BG) - D)

B(i) = = = 1}
W=tk - I (
where,
k constant p;/(47)

M dipole moment (gain and orientation)

L dipole location
R(1) ith measurement receiver location
B(i) full magnetic field at R(i)

A SQUID biomagnetometer is used to acquire the mag-
netic field at position l-é(i), but only measures one com-
ponent of the three-dimensional field. Thus only a scalar
mieasurement is made:

B(i) = B(i) §() (2)
where §(i) Jenctes the unit orientation of the ith senvor
and hence the component of the magnetic field acquired,
and the operation “- " denotes the inner producc of two
vectors. Combining equations (1) and (2) and manipulat-

ing the resulting triple scalar product yields
. Ri) - L) x a(i) - M _ = -
B(t):k( () ..') ..() = g(1) A

|R(i) - L|3

(3)

The vector §(i) can be viewed as a gain vector, relating
the moment intensity of the dipole to the measurement at
position l?( i). If we let cach gain vector be represented as a
1 x 3 row vector and the moment as a3 x 1 column veetor,
then we can arrange the measurements from m apatialiy
distributed receivers in a matrix form,

B Q)
B=| =1 @ |M=GOL )
B(m) g(m)

The parameters in @ represent the unknown position E,
and L' orepresents the unknown moment orientation Af.
The matrix G(#) can be considered the gain or relationship
between n unit moment souree at [ and the calumn veetor
of receiver locations { (1)}, , From this form we clearly
see the dfiaear relationship hetween the moment and the
raensurements. Chis model eastly extends to the multyple
dipole ense by superposition. For p dipoles,

1,

UGy Gy (H)

1,

or simply B = GI', where G can be partitioned nto the
smaller matrices G, (as defined in (4)): similarly 1" may
be partitioned as the concatenation of the moment vectors
for each of the p dipoles. Thus for m sensors and p dipoles.
Bism > 1, matrix G is m x 3p, and vector T 1s 3p x 1.

For simplicity in deriving the model, the biomaguetone
ter is assumed to make a perfect point field measurement
However, the finite coil area and gradiometer configuration
of a practical SQUID biomagnetcmeter, as well as other ef-
fects such as head and source models, can also be included
into the model, resulting in a very similar formulation to
that presented here [4].

‘The above expression i3 for a single time slice of data.
but evoked response data are usually collected as samples
over a segment of time. The result 1s a spatio-temporal
data matrix B = [B(1), -, B(N)] of m spatial measur.-
menis by N temporal measurements. MEG rescarchers
differ in the consiraints that should be placed on the lo-
cation and moment parameters. In [3], the different con-
strained models are reviewed. in this paper the moded
restricts the location of the dipoles to be constant through
out the measurement interval, but allows the moment 1
tensities and orientations to vary. The data matrix s then
formed as

B = G(0)[L(1),- -, L(N)] = G(AT. ()

Each column of the T matrix may be partitioned to

represent the moments of p dipoles at time j,

M)
G =|
M)

and each partition A?.(j) itsell ran be represented by ats
dipole source cemponents [5) Henee cach row of T rep
resents the time series for one component of one dipole
Siuce no constraints are placed on the tiime series of the
three components for ecach dipole, the onentation of the
dipole can vary or “retate” over time.

3 Error Bounds

This model assoines that the location, orientation, and
magnitude of the dipoles are unknown  Wo mieasare o set
of data F, which we model as F - G(OYT + N.owhere
N ix the unknown neise, and we set onr measure of fit o
be the least-squares fit between model and data 1 the
notae in each sample s 1. d zeroomean Ganssoan, then
the parameters that winimize this squared error are the
taaximum likelihood estimate of F

We can approach this problem as belonging o the class
of nonlinear least squares probleas whose variables sepa
rate {6 This approach focuses the iverse problen to thia
of solving for the pacametors i the matny Goosiee th
paramieters i T oean be replaced with ther least squares
or i -norm solution. This approach s well know

in the areny procesany, community, (eg 7)) and e |3



we presented the specific details for the MEG problem. In
this paper, we wish to focus our efforts cn bounding the
error of such an estimator.

3.1 The Cramer-Rao Bound

In this subsection, we will adapt our notation to effectively
use the results of Stoica {7] for most, of the proof; however,
unlike Stoica, we restrict ourselves to real data while ex-
panding our definition of his array manifold.

We assume that the unknown parameters are the vari-
ance of the noise, o2, the moment time series, I'(j), and
the dipole locations in #. For convenience, we will group
these parametets into one vector v,

v =[N, ...T L) (8)

where we have now explicitly listed the location parame-
ters in 6 for the p dipoles. We also recall that G(0) has the
partiticned structure G = [G,, ..., G;], where each par-
tion is itself m x 3; similarly, I'(j) can also be partitioned
as the concatenation of the moment ve-tcrs for each of the

p dipoles, T(HT = [T,)T, ..., Ip(j)'r]‘

Theorem 1 (Cramer-Rao Inequality) For the set of
data F and the stated probability distribution function of
the noise, let Y be any unbiased estimate of the determun-
istic parameters based on F = G(8)T + N. Then

(N)Tizl)"')

E{(v ~¥)(v—v)7} >3 (9

where J 1s the Fisher mmformation malnz,

J:E{ ln} ] [ lupN;] } (10)

Proof: See for example [8]. To calculate the Fisher infor-
mation matrix, we need to caiculate partial derivatives of
the log-likelihood function and tnen take expected values
of the outer product. For the case of spaially and tem-
porally wh te Gaussian noise with variance ¢?, the log-
likelihood function is straightforward to calculate for m

scusors and N time samples, yielling

ini =: —len(\/'z—;) - ;l-Nn; In(a?)

--—LHL G

The partinls with respect to variance and moments are
straightforward to calculate, as in [7),

G(0)." (). (11)

Slnt Nm A T
e L e 4 E T N Y
5(,.,')) - Yl 1 2”4,111\_(}) M) (12)
and Sl i
n T X .
——— o I N 13
7T0) NG ) (13)

The partials with respect to the locations requires care:
ful attention to notation, which deviates somewhat {from

that of Stoica due to the expanded form of the matrix G.
Each of the p dipole locations Ly is itself represented by
three parameters, which we will here denote by Cartesian
coordinates L., Lyk, and L.x. Consider the partial with
respect to L.,

6lnl

T
Lo T(J)J NQ

== Z[ (1)
which in turn requires the partial of the gain matrix. Now
consider that only the kth partition of the gain matrix is
a function of location L g,

G
m—[o,

6G,

0 _——
' [}
61';rk

C00 L 0] (15)
This partition is in general m x 3, (one column for each of
the three moment directions), and we denote the partial

of this partition by the m x 3 matrix

G
d(Les) = 37 ': (16)
Thus we can simpl.fy Equation (14) as
N
élnl 1 o . -
T = 57 LWLLOITAG)  (7)
x =1

The other two partials for Ly, and L, are similacly
formed. This nowation now allows us to more compactly
describe the 3 x 1 partials vector with respect to the vector
L, rather than just its individual components Lep. Ly
and [,

éinl
614

]

1 o
52[[(1(1,”). d(Lye). d(L.4)]

j=1

L.(5) 0 U

0 Le) 6 )TN 0N
0 0 L)
| & o
= = 2 e LONTAEGTNG)
=1

where “0" denotes the Kronecker product, Ty s the 2 x 3
identity matrix, and d(l_:k) = an o x 9 extension of the
our definition in (16), d(Lg) = [(1e). A(L,e). (L0

If for all p dipoles we define the full mox 9p partial ma
trix

D= [d(f)) d(Lp) (20
and the bloc - dagonal 9p x 3p matrix
Ly I () 0
X)) = (h
i) Ly 4,0))

we can now compactly write the 3p x 1 partials veetor warhy
respect to all locations Ly in 0,

bllll | 'li‘ . 1l oA, - 0
T FL‘\(” DN (2
)=t



This notation allows us to now parallel the work of Sto-
ica [7] in deriving the expectations of the cross products.
With the assumption that the the noise is zero-mean and
white, several of the expectations of the cross products
are simply zero. We can group the parameters in ¢ as
¥ = [02,I7.67T)T. If we define A(j) = GTDX(j), A =
(AT, ..., AN)TIT, and ' = 3% (DX(3)T(DX (),
then the Fisher information matrix partitions nicely into
three parts. After taking all expectations, the final result
for the Fisher information matrix is

) i 0 0
J==| 0 INn®G"'G A (23)
L o AT r

Inversion of this matrix J gives us the Crainer-Rao lower
bound (CRLB) for the error variance. We are particularly
interested in the diagonal elements of this inverse, since the
CRLB for the ith param«ter v; is simply the i-ith element
of J=! [8, page 51). With this partition and using the
standard inversion formula (8, page 102], we can express
the CRLBs for the variance and the locations as

204

—

, 2y _
CRLB(e?) = N

(24)

CRLE(6)

o*[r - AT[Iv ® (GTG)~'jA] !

N
o[ _(OX()TPHDX(G)|™" (25)
=1

where PE = (I — GG') = (I - Pg) is the orthogonal
complement of the projection matrix for G, and we use
reduced rank forms of G as necessary to form the pseu-
donmverse G'. For the calculation of the CRLB for the
moment time series, if we let y = CRLEB(0)/0?, then the

CRLB for ~ach time j, j=1,... N is

CRLRBI>G)) = e¥(GTG) !
(I+ G'DX(/1X()TDTG(G"G)™)  (26)

4 Computational Results

We conclude by presenting the results of two simulations
of MEG data, In the first simulatiou, data were simulated
for the case of three dipoles with fixed location and ori
entation. Associated with each dipole are three location
parameters, theee orientation parnmeters and the assocy-
ated N-length sealar moment time senes. The data were
computed for an array of 37 closely spaced sensors radi
ally orieuted and positioned on the surface of a sphere of
rading 12 ey, A total of 100 time samples were gener-
ated and corrupted by additive white Gaussian noise with
a SNR of 10dB, where SNR is computed as the ratio of the
avernge magnetic field mensurement power to the variance
of the noise,

The loeations of the three dipoles were estimated using
a Nelder-Meade simplex search to effectively maxinmize the
projecticn of the data onto the subspace spanued by the

matrix G. The moment time seriess T were then found
as a linear least-squares fit. The true and estimated Jo-
cations are listed in Table 1 and the estimated time series
are shown in Figure 1 (left), overlaid with the original sini-
ulated time series. To approximate a constrained oricuta-
tion, the identified time series were then fit to a rank une
model (per dipole) via an SVD, resulting in the time se-
ries d'splayed in Figure 1 (right). The true and identified
moments are displayed in Tablc 1.

To illustrate the CRLB calculations, in the second sim-
ulation we examined the case for one time slice, N = 1,
and calculated the error variance for the location of one
dipole as a function of distance to the array. The dipole
was oriented in the x-axis direction and was moved along
the z-axis from the coordinate origin out to the array of
sensors. The 37 sensors were positioned on the surface of
a sphere of radius 12 cm. Figure 2 presents the standard
deviation for the =rror in estimating the xyz coordinates
of the dipole. Overlaid on the CRLBs are the results of
a 1000 iteration Monte Carlo run for the least-squares es-
timator. The results show excellent agreement when the
dipole is close to the array, but as the dipole nears the ccor-
dinate origin, the errors become large, and the Cramer- Rao
beund is apparently no longer a tight lower bound.
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: : i 1 i Mormeats
Dipole 1 Dipole 2 Dipole 3

True and Estimated Location (cm)
L. I, L L. . L, L, L, L, |

True [ 2.800 -1.700 8.300 [ -2.900 -1.600 8.300 { 0009 3.300 8.400 |

Est. | 2798 -1.753 8.236 | -2.922 -1.562 8.341]-0.013 3.298 8.490
True and Estimated Moments (from SVD)

M. M, M, M, M, M, M, M, M,

True | -0.400 0862 0311| 0.767 0525 0.369| 0516 -0.797 0.313

Est. | -0402 0858 0.319 | 0.755 0.543 0.566 | 0.503 -0.805 0.314

Siom aied and Fited Time Sariws {or Thres Dtpo'ss Pued Tine Series fo Three Flzad Dipoies

08 —— - 0.2 e
o 0

Figure 1: Estimated moment time series for three dipoles. Three dipoles of fixed tangentia! orientation (no radial
component) were given greatly overlapping time series and projected into Cartesian coordinates, one time series per
coordinate per dipole. A Nelder-Meade simplex algorithm was used tc find the locations. The nine time series
were found with a simple least-squares fit, plotted in the left figure. An SVD was then performed on each set of three
waveforms to approximate constrained orientations, and the resulting dipole motment magnitude and polarity is plotted
in the right figure.
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Figure 20 Cramer-Rao lower bounds for a single dipole, overlaid with 1000 iteration Monte Carlo simulations The
dipole was oriented in the x-axis direction and moved along the z.axis until just under the sensor areay, which was
focated at 12 cm on the z-axis. Displayed are the standard deviations i estimating the three coordinate positions of
the dipole, as a function of dipole location. The lower curve is the CRLB, the upper one is the Monte Carlo sitmulations



